词语大全 > 光复用技术

光复用技术

光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。

波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术; 在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。

CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30-。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。

光时分复用系统(OTDM)就是使设备中的电子电路只工作在相对较低的速率上,从而避开了电子设备对提高速率的限制,能达到扩容的目的。 OTDM需要的基本技术包括超短光脉部发生技术、全光时分复用/去复用技术、超高速定时提取技术。

OTDM传输系统的关键技术包括超短光脉冲发生技术、全光时分复用/去复用技术和超高速定时提取技术等。超短光脉冲发生技术是实现超高速OTDM系统的必要条件之一。发送的信号光脉冲越窄,单位时间内发送的脉冲就越多,传输的信息量就越大。在OTDM试验中采用模同步掺铒光纤环形激光器就是为了产生超短光脉冲,同时,这种激光器温度稳定,产生的脉冲几乎没有啁啾,在高频条件下,不需要进行啁啾补偿或脉冲压缩,就能产生10ps以下的超短脉冲。

将低速的光信号进行时分复用,形成超高速的光信号的光时分复用技术以及将超高速的光信号进行时分去复用,再生低速光信号的去复用技术是OTDM不可缺少的技术,使用电子电路的复用/去复用的工作速度有限,目前的最高速率可达20Gb/s。为了打破这种现状,实现超高速时分复用/去复用,人们正在研制全光控制的各种超高速电路,其重点又放在去复用电路上,主要有光学克尔开关、四波混合(FWM)开关、交叉相位调制(xPM)开关及非线性光学环路镜(NOLM)等几种结构。

光定时提取技术同样是OTDM不可缺少的技术。特别是在100Gb/s以上的光传输系统中,接收端采用重新定时的时钟,产生控制光脉冲,时隙特别短,因此,希望控制光的时间抖动尽可能小,就必须尽量降低重新定时的时钟相位噪声。在目前的OTDM试验中,主要采用了两种方案,一是利用行波半导体激光放大器的光波混合的锁相环电路,另一种是利用行波导体激光放大器内增益调制的锁相环电路。

在超高速光通信系统中,光时分复用是一种十分有效的方式,而且速率越高,效果越显著。但是,由于密集波分复用和色散补偿技术的进展神速,光时分复用技术的优越性已有所逊色,当传输速率在40Gb/s以上时实现OTDM技术有一定困难,井在色散补偿方面也有难以解决的问题。

词语大全 8944.net

copyright ©right 2010-2021。
词语大全内容来自网络,如有侵犯请联系客服。zhit325@126.com